Changes

Jump to navigation Jump to search
7,908 bytes removed ,  11:08, 26 May 2023
no edit summary
Line 156: Line 156:  
=== Melanin vis-a-vis varna: ===
 
=== Melanin vis-a-vis varna: ===
 
<p style="text-align:justify;">Melanin is produced by melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes.<ref name="ref8">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Individuals have different skin colours mainly because their melanocytes produce different amount and kinds of melanin. The genetic mechanism behind human skin colour is mainly regulated by the enzyme tyrosinase, which creates the colour of the skin, eyes, and hair shades.<ref name="ref9">Sturm, R. A. (2006). "A golden age of human pigmentation genetics". Trends in Genetics. 22 (9): 464–469. doi:10.1016/j.tig.2006.06.010. PMID 16857289</ref><sup>,</sup><ref name="ref10">Sturm, R. A.; Teasdale, R. D.; Box, N. F. (2001). "Human pigmentation genes: Identification, structure and consequences of polymorphic variation". Gene. 277 (1–2): 49–62. doi:10.1016/s0378-1119(01)00694-1. PMID 11602344</ref> Differences in skin colour are also attributed to differences in size and distribution of melanosomes in the skin.<ref name="ref11">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance.<ref name="ref12">Schneider, Patricia (2003). "The Genetics and Evolution of Skin Color: The Case of Desiree's Baby". RACE—The Power of an Illusion. Public Broadcasting Service. Archived from the original on 6 May 2015. Retrieved 14 April 2015.</ref> One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones.</p>
 
<p style="text-align:justify;">Melanin is produced by melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes.<ref name="ref8">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Individuals have different skin colours mainly because their melanocytes produce different amount and kinds of melanin. The genetic mechanism behind human skin colour is mainly regulated by the enzyme tyrosinase, which creates the colour of the skin, eyes, and hair shades.<ref name="ref9">Sturm, R. A. (2006). "A golden age of human pigmentation genetics". Trends in Genetics. 22 (9): 464–469. doi:10.1016/j.tig.2006.06.010. PMID 16857289</ref><sup>,</sup><ref name="ref10">Sturm, R. A.; Teasdale, R. D.; Box, N. F. (2001). "Human pigmentation genes: Identification, structure and consequences of polymorphic variation". Gene. 277 (1–2): 49–62. doi:10.1016/s0378-1119(01)00694-1. PMID 11602344</ref> Differences in skin colour are also attributed to differences in size and distribution of melanosomes in the skin.<ref name="ref11">Jablonski, Nina (2012). Living Color. Berkeley, Los Angeles, London: University of California Press. ISBN 978-0-520-25153-3.</ref>Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance.<ref name="ref12">Schneider, Patricia (2003). "The Genetics and Evolution of Skin Color: The Case of Desiree's Baby". RACE—The Power of an Illusion. Public Broadcasting Service. Archived from the original on 6 May 2015. Retrieved 14 April 2015.</ref> One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones.</p>
  −
== Excellence of body tissues ([[Sara|sara]]) vis-a-vis varna: ==
  −
<p style="text-align:justify;">The excellence of [[Dhatu|dhatus (body tissues)]] is studied with reference to [[Sara|sara]]. [[Sara|Sara]] is classified into eight categories. Among these eight categories, twak [[Sara|sara]] (excellence in rasa dhatu) individuals have unctuous, smooth, soft, clear, fine, less numerous, deep rooted and tender hair with lustrous skin.[Cha. Sa. [[Vimana Sthana|VimanaSthana]] 8/103] Rasa dhatu is rich in [[Jala mahabhuta|jalamahabhuta]] imparting smoothness, softness and unctuousness to the skin. <br/>Rakta [[Sara|sara]] (excellence in [[Rakta dhatu|rakta dhatu]]) individuals have unctuousness, red colour, beautiful dazzling appearance of the ears, eyes, face, tongue, nose, lips, sole of the hand and feet, nails, forehead and genital organs.[Cha. Sa. [[Vimana Sthana|VimanaSthana]] 8/104] These individuals are believed to have well developed intra-dermal blood capillaries and circulation along with overall excellence in blood vascular system. <br/>[[Meda dhatu|Meda]] [[Sara|sara]] (excellence in [[Meda dhatu|meda dhatu]]) individuals have unctuousness in complexion, eyes, scalp hair and other parts of the [[Sharira|body]], nails, teeth, lips, urine and faeces.[Cha. Sa. [[Vimana Sthana|VimanaSthana]] 8/106] These individuals have excellence in adipose tissue which is unctuous in nature. <br/>[[Majja dhatu|Majja]] [[Sara|sara]] (excellence in [[Majja dhatu|majja dhatu]]) individuals too have unctuous complexion.[Cha. Sa. [[Vimana Sthana|VimanaSthana]] 8/108] [[Majja dhatu|Majja dhatu]] is predominantly formed of [[Jala mahabhuta|jalamahabhuta]]. <br/>[[Shukra dhatu|Shukra]] [[Sara|sara]] (excellence in [[Shukra dhatu|shukra dhatu]]) individuals have a gentle look, having eyes as if filled with milk, cheerfulness, having teeth which are unctuous, round, strong, even, beautiful, clean and have unctuous complexion with dazzling appearance.[Cha. Sa. [[Vimana Sthana|VimanaSthana]] 8/109] [[Shukra dhatu|Shukra dhatu]] or reproductive tissues are believed to be formed at the end from essence of all other [[Dhatu|dhatus]]. Thus it indicate the excellence of all [[Dhatu|dhatus]]. </p>
  −
  −
== Effect of [[Dinacharya|dinacharya(daily regimen)]] on varna ==
  −
<p style="text-align:justify;">A healthy daily regimen helps in maintaining a healthy varna. These regimens include following: <br/>Consumption of food in proper quantity[Cha. Sa. [[Sutra Sthana|Sutra Sthana]] 5/8] <br/>Applying udvartana (massaging the [[Sharira|body]] with soft, fragrant powder) [Ast. Hri. [[Sutra Sthana|Sutra Sthana]] 2/15] <br/>Maintaining  the three supports of life viz. food, sleep and brahmacharya (avoidance of sexual act physically, mentally and verbally in all ways under any circumstances) in life[Cha. Sa. [[Sutra Sthana|Sutra Sthana]] 11/35] <br/>Use of rasayana[Cha. Sa. [[Chikitsa Sthana|ChikitsaSthana]] 1/1/7] (the drug, food or therapy which has capacity to prevent ageing, improve longevity, provide immunity against the [[Vyadhi|diseases]], promote mental competence, increase vitality and lustre of the [[Sharira|body]]). <br/>Jatharagni (digestive capacity) is also responsible for complexion [Cha. Sa. [[Chikitsa Sthana|ChikitsaSthana]] 15/3], hence such diet should be consumed which establishes a healthy jatharagni. Importance of diet in imparting good complexion is mentioned.[Cha. Sa. [[Sutra Sthana|Sutra Sthana]] 27/349] [Cha. Sa. [[Sutra Sthana|Sutra Sthana]] 27/3]. The food that is consumed is digested by jatharagni. This digestion produces nourishment to the [[Dhatu|dhatus (tissues)]] of the [[Sharira|body]]. Healthy tissues are responsible for maintenance of healthy skin, thus indicating role of jatharagni in varna. </p>
  −
  −
== Ojas & varna ==
  −
<p style="text-align:justify;">Ojas is the essence of the [[Dhatu|body tissues (dhatus)]] [Su. Sa. [[Sutra Sthana|Sutra Sthana]] 15/24]. As healthy state of all dhatu keeps the skin healthy.Thusone of the functions of ojas is to maintain varna.[Su. Sa. [[Sutra Sthana|Sutra Sthana]] 15/25] The qualitative deterioration (ojavyapat) causes impairment of complexion.[Su. Sa. [[Sutra Sthana|Sutra Sthana]] 15/29]</p>
  −
  −
== Varna as an atmaja bhava ==
  −
<p style="text-align:justify;">[[Ayurveda|Ayurveda]] believes that six procreative factors affect the formation of foetus. One among these factors is atmaja (atma=soul, ja=emerging from) factor. Atmaja factor is belived to affect varna.[Cha. Sa. [[Sharira Sthana|SharirSthana]] 3/10]</p>
  −
  −
== Importance of concept ==
  −
=== Importance in diagnosis & prognosis of [[Vyadhi|disease]]: ===
  −
<p style="text-align:justify;">The natural complexion indicates a state of health or natural physiological processes inside the [[Sharira|body]]. Sudden spontaneous change in natural complexion may be due to some pathology. Sudden drastic change in natural complexion may also indicate death in near future. Apart from discussing the natural complexion, some of the abnormal complexions like blue, grey, coppery, green and albino (extremely white)are described. [Cha. Sa. [[Indriya Sthana|IndriyaSthana]] 1/9] Example, cyanotic complexion is observed in severe right ventricular hypertrophic cardiomyopathy.<ref name="ref6" /> The abnormalities includeif half of the [[Sharira|body]] has natural complexion and the other have abnormal complexion, and both of them are evenly demarcated by a line.These normal and abnormal complexions may simultaneously appear in left and right sides, front and back sides, upper and lower parts or internal and external parts of the [[Sharira|body]]. Natural and abnormal complexions simultaneously appearing in face or other parts of the [[Sharira|body]], are the morbid signs indicating imminent death.[Cha. Sa. [[Indriya Sthana|IndriyaSthana]] 1/10] For example, amelanotic melanomas presenting as red skin lesions are often lethal.<ref name="ref7" /></p>
  −
  −
=== Clinical diagnosis based on varna: ===
  −
<p style="text-align:justify;">Some [[Vyadhi|diseases]] often have an impact on varna. Thus varna can be used as one of the diagnostic criterias for identification of [[Vyadhi|diseases]]. Examples are as follows:
  −
* Pandu (anaemia); Pale colour. [Cha. Sa. [[Chikitsa Sthana|ChikitsaSthana]] 16/11]
  −
* Kamla (jaundice): Yellowish [Cha. Sa. [[Chikitsa Sthana|ChikitsaSthana]] 16/35]
  −
* Vitiligo: Depigmented patches over skin.
  −
* Albinism: Depigmentation of skin.
  −
* Cyanosis: Bluish colour (may be due to heart defect).
  −
</p>
  −
  −
== Contemporary theories ==
  −
=== Melanin vis-a-vis varna: ===
  −
<p style="text-align:justify;">Melanin is produced by melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes.<ref name="ref8" /> Individuals have different skin colours mainly because their melanocytes produce different amount and kinds of melanin.The genetic mechanism behind human skin colour is mainly regulated by the enzyme tyrosinase, which creates the colour of the skin, eyes, and hair shades.<ref name="ref9" /><sup>,</sup><ref name="ref10" /> Differences in skin colour are also attributed to differences in size and distribution of melanosomes in the skin.<ref name="ref11" /> Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance.<ref name="ref12" /> One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones.</p>
      
=== Ultraviolet radiation & Varna: ===
 
=== Ultraviolet radiation & Varna: ===

Navigation menu