Changes

17 bytes removed ,  06:55, 11 January 2021
Line 317: Line 317:     
==Current researches ==
 
==Current researches ==
During early embryogenesis, the pro-embryo consists of two domains, the embryo proper and the suspensor. Recent studies have revealed that the suspensor plays an important role in early embryogenesis and the process of suspensor formation and degeneration may provide a unique model for studies on cell division pattern, cell fate determination, and cell death.  The different shapes attributed to the early embryonic development like jelly mass, knot like structure, elongated muscle like structure, irregular elevation etc. described in Ayurveda embryology may be explored on the basis of these findings.
+
 
Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues.  These cell differentiation processes are mainly attributed to the action of [[vata]] [[dosha]].
+
*During early embryogenesis, the pro-embryo consists of two domains, the embryo proper and the suspensor. Recent studies have revealed that the suspensor plays an important role in early embryogenesis and the process of suspensor formation and degeneration may provide a unique model for studies on cell division pattern, cell fate determination, and cell death.  The different shapes attributed to the early embryonic development like jelly mass, knot like structure, elongated muscle like structure, irregular elevation etc. described in Ayurveda embryology may be explored on the basis of these findings.
The maternal-to-embryonic transition consists of critical developmental processes including maternal RNA depletion and embryonic genome activation. In recent years, key maternal proteins encoded by maternal-effect genes have been determined, primarily using genetically modified mouse models. These proteins are implicated in various aspects of early embryonic development including maternal mRNA degradation, epigenetic reprogramming, signal transduction, protein translation and initiation of embryonic genome activation. These shows the importance and main contribution of maternal factor (matruja bhava) in the early stage of embryonic development. Diseases that occur due to mutation in the mitochondrial genome are inherited only from the mother, as only the ovum
+
 
contains mitochondrial genetic material.  
+
*Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues.  These cell differentiation processes are mainly attributed to the action of [[vata]] [[dosha]].
Advanced paternal age is well-documented to be associated with new dominant mutations and paternal exposures to drugs may increase the risk of adverse fetal outcome.
+
 
Epigenetic mechanisms are influenced by several factors like development in utero and in childhood, environmental chemicals, drugs and pharmaceuticals, aging, and diet. Example- Methyl groups, an epigenetic factor found in some dietary sources, can tag DNA and activate or repress genes which is known as DNA methylation. So, the six procreative factors (Shad garbhakara bhava) have an important role as causative factors of congenital, hereditary, and genetic anomalies by mutation and epigenetics.  
+
*The maternal-to-embryonic transition consists of critical developmental processes including maternal RNA depletion and embryonic genome activation. In recent years, key maternal proteins encoded by maternal-effect genes have been determined, primarily using genetically modified mouse models. These proteins are implicated in various aspects of early embryonic development including maternal mRNA degradation, epigenetic reprogramming, signal transduction, protein translation and initiation of embryonic genome activation.These shows the importance and main contribution of maternal factor (matruja bhava) in the early stage of embryonic development. Diseases that occur due to mutation in the mitochondrial genome are inherited only from the mother, as only the ovum contains mitochondrial genetic material.  
Designer babies are babies from embryos formed by in-vitro fertilization (IVF). They are either created from an embryo selected by preimplantation genetic diagnosis (PGD) or genetically modified in order to influence the traits of the resulting children. The primary aim of creating designer babies is to avoid heritable diseases coded by mutations in DNA.  
+
 
 +
*Advanced paternal age is well-documented to be associated with new dominant mutations and paternal exposures to drugs may increase the risk of adverse fetal outcome.  
 +
 
 +
*Epigenetic mechanisms are influenced by several factors like development in utero and in childhood, environmental chemicals, drugs and pharmaceuticals, aging, and diet. Example- Methyl groups, an epigenetic factor found in some dietary sources, can tag DNA and activate or repress genes which is known as DNA methylation. So, the six procreative factors (Shad garbhakara bhava) have an important role as causative factors of congenital, hereditary, and genetic anomalies by mutation and epigenetics.  
 +
 
 +
*Designer babies are babies from embryos formed by in-vitro fertilization (IVF). They are either created from an embryo selected by preimplantation genetic diagnosis (PGD) or genetically modified in order to influence the traits of the resulting children. The primary aim of creating designer babies is to avoid heritable diseases coded by mutations in DNA.
 +
 
 
==More information ==
 
==More information ==
 
[[Khuddika Garbhavakranti Sharira]]  
 
[[Khuddika Garbhavakranti Sharira]]  
2,171

edits